123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904 |
- /**
- * @license Fraction.js v4.3.7 31/08/2023
- * https://www.xarg.org/2014/03/rational-numbers-in-javascript/
- *
- * Copyright (c) 2023, Robert Eisele (robert@raw.org)
- * Dual licensed under the MIT or GPL Version 2 licenses.
- **/
- /**
- *
- * This class offers the possibility to calculate fractions.
- * You can pass a fraction in different formats. Either as array, as double, as string or as an integer.
- *
- * Array/Object form
- * [ 0 => <numerator>, 1 => <denominator> ]
- * [ n => <numerator>, d => <denominator> ]
- *
- * Integer form
- * - Single integer value
- *
- * Double form
- * - Single double value
- *
- * String form
- * 123.456 - a simple double
- * 123/456 - a string fraction
- * 123.'456' - a double with repeating decimal places
- * 123.(456) - synonym
- * 123.45'6' - a double with repeating last place
- * 123.45(6) - synonym
- *
- * Example:
- *
- * var f = new Fraction("9.4'31'");
- * f.mul([-4, 3]).div(4.9);
- *
- */
- (function(root) {
- "use strict";
- // Maximum search depth for cyclic rational numbers. 2000 should be more than enough.
- // Example: 1/7 = 0.(142857) has 6 repeating decimal places.
- // If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits
- var MAX_CYCLE_LEN = 2000;
- // Parsed data to avoid calling "new" all the time
- var P = {
- "s": 1,
- "n": 0,
- "d": 1
- };
- function assign(n, s) {
- if (isNaN(n = parseInt(n, 10))) {
- throw InvalidParameter();
- }
- return n * s;
- }
- // Creates a new Fraction internally without the need of the bulky constructor
- function newFraction(n, d) {
- if (d === 0) {
- throw DivisionByZero();
- }
- var f = Object.create(Fraction.prototype);
- f["s"] = n < 0 ? -1 : 1;
- n = n < 0 ? -n : n;
- var a = gcd(n, d);
- f["n"] = n / a;
- f["d"] = d / a;
- return f;
- }
- function factorize(num) {
- var factors = {};
- var n = num;
- var i = 2;
- var s = 4;
- while (s <= n) {
- while (n % i === 0) {
- n/= i;
- factors[i] = (factors[i] || 0) + 1;
- }
- s+= 1 + 2 * i++;
- }
- if (n !== num) {
- if (n > 1)
- factors[n] = (factors[n] || 0) + 1;
- } else {
- factors[num] = (factors[num] || 0) + 1;
- }
- return factors;
- }
- var parse = function(p1, p2) {
- var n = 0, d = 1, s = 1;
- var v = 0, w = 0, x = 0, y = 1, z = 1;
- var A = 0, B = 1;
- var C = 1, D = 1;
- var N = 10000000;
- var M;
- if (p1 === undefined || p1 === null) {
- /* void */
- } else if (p2 !== undefined) {
- n = p1;
- d = p2;
- s = n * d;
- if (n % 1 !== 0 || d % 1 !== 0) {
- throw NonIntegerParameter();
- }
- } else
- switch (typeof p1) {
- case "object":
- {
- if ("d" in p1 && "n" in p1) {
- n = p1["n"];
- d = p1["d"];
- if ("s" in p1)
- n*= p1["s"];
- } else if (0 in p1) {
- n = p1[0];
- if (1 in p1)
- d = p1[1];
- } else {
- throw InvalidParameter();
- }
- s = n * d;
- break;
- }
- case "number":
- {
- if (p1 < 0) {
- s = p1;
- p1 = -p1;
- }
- if (p1 % 1 === 0) {
- n = p1;
- } else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow
- if (p1 >= 1) {
- z = Math.pow(10, Math.floor(1 + Math.log(p1) / Math.LN10));
- p1/= z;
- }
- // Using Farey Sequences
- // http://www.johndcook.com/blog/2010/10/20/best-rational-approximation/
- while (B <= N && D <= N) {
- M = (A + C) / (B + D);
- if (p1 === M) {
- if (B + D <= N) {
- n = A + C;
- d = B + D;
- } else if (D > B) {
- n = C;
- d = D;
- } else {
- n = A;
- d = B;
- }
- break;
- } else {
- if (p1 > M) {
- A+= C;
- B+= D;
- } else {
- C+= A;
- D+= B;
- }
- if (B > N) {
- n = C;
- d = D;
- } else {
- n = A;
- d = B;
- }
- }
- }
- n*= z;
- } else if (isNaN(p1) || isNaN(p2)) {
- d = n = NaN;
- }
- break;
- }
- case "string":
- {
- B = p1.match(/\d+|./g);
- if (B === null)
- throw InvalidParameter();
- if (B[A] === '-') {// Check for minus sign at the beginning
- s = -1;
- A++;
- } else if (B[A] === '+') {// Check for plus sign at the beginning
- A++;
- }
- if (B.length === A + 1) { // Check if it's just a simple number "1234"
- w = assign(B[A++], s);
- } else if (B[A + 1] === '.' || B[A] === '.') { // Check if it's a decimal number
- if (B[A] !== '.') { // Handle 0.5 and .5
- v = assign(B[A++], s);
- }
- A++;
- // Check for decimal places
- if (A + 1 === B.length || B[A + 1] === '(' && B[A + 3] === ')' || B[A + 1] === "'" && B[A + 3] === "'") {
- w = assign(B[A], s);
- y = Math.pow(10, B[A].length);
- A++;
- }
- // Check for repeating places
- if (B[A] === '(' && B[A + 2] === ')' || B[A] === "'" && B[A + 2] === "'") {
- x = assign(B[A + 1], s);
- z = Math.pow(10, B[A + 1].length) - 1;
- A+= 3;
- }
- } else if (B[A + 1] === '/' || B[A + 1] === ':') { // Check for a simple fraction "123/456" or "123:456"
- w = assign(B[A], s);
- y = assign(B[A + 2], 1);
- A+= 3;
- } else if (B[A + 3] === '/' && B[A + 1] === ' ') { // Check for a complex fraction "123 1/2"
- v = assign(B[A], s);
- w = assign(B[A + 2], s);
- y = assign(B[A + 4], 1);
- A+= 5;
- }
- if (B.length <= A) { // Check for more tokens on the stack
- d = y * z;
- s = /* void */
- n = x + d * v + z * w;
- break;
- }
- /* Fall through on error */
- }
- default:
- throw InvalidParameter();
- }
- if (d === 0) {
- throw DivisionByZero();
- }
- P["s"] = s < 0 ? -1 : 1;
- P["n"] = Math.abs(n);
- P["d"] = Math.abs(d);
- };
- function modpow(b, e, m) {
- var r = 1;
- for (; e > 0; b = (b * b) % m, e >>= 1) {
- if (e & 1) {
- r = (r * b) % m;
- }
- }
- return r;
- }
- function cycleLen(n, d) {
- for (; d % 2 === 0;
- d/= 2) {
- }
- for (; d % 5 === 0;
- d/= 5) {
- }
- if (d === 1) // Catch non-cyclic numbers
- return 0;
- // If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem:
- // 10^(d-1) % d == 1
- // However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone,
- // as we want to translate the numbers to strings.
- var rem = 10 % d;
- var t = 1;
- for (; rem !== 1; t++) {
- rem = rem * 10 % d;
- if (t > MAX_CYCLE_LEN)
- return 0; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1`
- }
- return t;
- }
- function cycleStart(n, d, len) {
- var rem1 = 1;
- var rem2 = modpow(10, len, d);
- for (var t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE)
- // Solve 10^s == 10^(s+t) (mod d)
- if (rem1 === rem2)
- return t;
- rem1 = rem1 * 10 % d;
- rem2 = rem2 * 10 % d;
- }
- return 0;
- }
- function gcd(a, b) {
- if (!a)
- return b;
- if (!b)
- return a;
- while (1) {
- a%= b;
- if (!a)
- return b;
- b%= a;
- if (!b)
- return a;
- }
- };
- /**
- * Module constructor
- *
- * @constructor
- * @param {number|Fraction=} a
- * @param {number=} b
- */
- function Fraction(a, b) {
- parse(a, b);
- if (this instanceof Fraction) {
- a = gcd(P["d"], P["n"]); // Abuse variable a
- this["s"] = P["s"];
- this["n"] = P["n"] / a;
- this["d"] = P["d"] / a;
- } else {
- return newFraction(P['s'] * P['n'], P['d']);
- }
- }
- var DivisionByZero = function() { return new Error("Division by Zero"); };
- var InvalidParameter = function() { return new Error("Invalid argument"); };
- var NonIntegerParameter = function() { return new Error("Parameters must be integer"); };
- Fraction.prototype = {
- "s": 1,
- "n": 0,
- "d": 1,
- /**
- * Calculates the absolute value
- *
- * Ex: new Fraction(-4).abs() => 4
- **/
- "abs": function() {
- return newFraction(this["n"], this["d"]);
- },
- /**
- * Inverts the sign of the current fraction
- *
- * Ex: new Fraction(-4).neg() => 4
- **/
- "neg": function() {
- return newFraction(-this["s"] * this["n"], this["d"]);
- },
- /**
- * Adds two rational numbers
- *
- * Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30
- **/
- "add": function(a, b) {
- parse(a, b);
- return newFraction(
- this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"],
- this["d"] * P["d"]
- );
- },
- /**
- * Subtracts two rational numbers
- *
- * Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30
- **/
- "sub": function(a, b) {
- parse(a, b);
- return newFraction(
- this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"],
- this["d"] * P["d"]
- );
- },
- /**
- * Multiplies two rational numbers
- *
- * Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111
- **/
- "mul": function(a, b) {
- parse(a, b);
- return newFraction(
- this["s"] * P["s"] * this["n"] * P["n"],
- this["d"] * P["d"]
- );
- },
- /**
- * Divides two rational numbers
- *
- * Ex: new Fraction("-17.(345)").inverse().div(3)
- **/
- "div": function(a, b) {
- parse(a, b);
- return newFraction(
- this["s"] * P["s"] * this["n"] * P["d"],
- this["d"] * P["n"]
- );
- },
- /**
- * Clones the actual object
- *
- * Ex: new Fraction("-17.(345)").clone()
- **/
- "clone": function() {
- return newFraction(this['s'] * this['n'], this['d']);
- },
- /**
- * Calculates the modulo of two rational numbers - a more precise fmod
- *
- * Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6)
- **/
- "mod": function(a, b) {
- if (isNaN(this['n']) || isNaN(this['d'])) {
- return new Fraction(NaN);
- }
- if (a === undefined) {
- return newFraction(this["s"] * this["n"] % this["d"], 1);
- }
- parse(a, b);
- if (0 === P["n"] && 0 === this["d"]) {
- throw DivisionByZero();
- }
- /*
- * First silly attempt, kinda slow
- *
- return that["sub"]({
- "n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)),
- "d": num["d"],
- "s": this["s"]
- });*/
- /*
- * New attempt: a1 / b1 = a2 / b2 * q + r
- * => b2 * a1 = a2 * b1 * q + b1 * b2 * r
- * => (b2 * a1 % a2 * b1) / (b1 * b2)
- */
- return newFraction(
- this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]),
- P["d"] * this["d"]
- );
- },
- /**
- * Calculates the fractional gcd of two rational numbers
- *
- * Ex: new Fraction(5,8).gcd(3,7) => 1/56
- */
- "gcd": function(a, b) {
- parse(a, b);
- // gcd(a / b, c / d) = gcd(a, c) / lcm(b, d)
- return newFraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]);
- },
- /**
- * Calculates the fractional lcm of two rational numbers
- *
- * Ex: new Fraction(5,8).lcm(3,7) => 15
- */
- "lcm": function(a, b) {
- parse(a, b);
- // lcm(a / b, c / d) = lcm(a, c) / gcd(b, d)
- if (P["n"] === 0 && this["n"] === 0) {
- return newFraction(0, 1);
- }
- return newFraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]));
- },
- /**
- * Calculates the ceil of a rational number
- *
- * Ex: new Fraction('4.(3)').ceil() => (5 / 1)
- **/
- "ceil": function(places) {
- places = Math.pow(10, places || 0);
- if (isNaN(this["n"]) || isNaN(this["d"])) {
- return new Fraction(NaN);
- }
- return newFraction(Math.ceil(places * this["s"] * this["n"] / this["d"]), places);
- },
- /**
- * Calculates the floor of a rational number
- *
- * Ex: new Fraction('4.(3)').floor() => (4 / 1)
- **/
- "floor": function(places) {
- places = Math.pow(10, places || 0);
- if (isNaN(this["n"]) || isNaN(this["d"])) {
- return new Fraction(NaN);
- }
- return newFraction(Math.floor(places * this["s"] * this["n"] / this["d"]), places);
- },
- /**
- * Rounds a rational numbers
- *
- * Ex: new Fraction('4.(3)').round() => (4 / 1)
- **/
- "round": function(places) {
- places = Math.pow(10, places || 0);
- if (isNaN(this["n"]) || isNaN(this["d"])) {
- return new Fraction(NaN);
- }
- return newFraction(Math.round(places * this["s"] * this["n"] / this["d"]), places);
- },
- /**
- * Rounds a rational number to a multiple of another rational number
- *
- * Ex: new Fraction('0.9').roundTo("1/8") => 7 / 8
- **/
- "roundTo": function(a, b) {
- /*
- k * x/y ≤ a/b < (k+1) * x/y
- ⇔ k ≤ a/b / (x/y) < (k+1)
- ⇔ k = floor(a/b * y/x)
- */
- parse(a, b);
- return newFraction(this['s'] * Math.round(this['n'] * P['d'] / (this['d'] * P['n'])) * P['n'], P['d']);
- },
- /**
- * Gets the inverse of the fraction, means numerator and denominator are exchanged
- *
- * Ex: new Fraction([-3, 4]).inverse() => -4 / 3
- **/
- "inverse": function() {
- return newFraction(this["s"] * this["d"], this["n"]);
- },
- /**
- * Calculates the fraction to some rational exponent, if possible
- *
- * Ex: new Fraction(-1,2).pow(-3) => -8
- */
- "pow": function(a, b) {
- parse(a, b);
- // Trivial case when exp is an integer
- if (P['d'] === 1) {
- if (P['s'] < 0) {
- return newFraction(Math.pow(this['s'] * this["d"], P['n']), Math.pow(this["n"], P['n']));
- } else {
- return newFraction(Math.pow(this['s'] * this["n"], P['n']), Math.pow(this["d"], P['n']));
- }
- }
- // Negative roots become complex
- // (-a/b)^(c/d) = x
- // <=> (-1)^(c/d) * (a/b)^(c/d) = x
- // <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x # rotate 1 by 180°
- // <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x # DeMoivre's formula in Q ( https://proofwiki.org/wiki/De_Moivre%27s_Formula/Rational_Index )
- // From which follows that only for c=0 the root is non-complex. c/d is a reduced fraction, so that sin(c/dpi)=0 occurs for d=1, which is handled by our trivial case.
- if (this['s'] < 0) return null;
- // Now prime factor n and d
- var N = factorize(this['n']);
- var D = factorize(this['d']);
- // Exponentiate and take root for n and d individually
- var n = 1;
- var d = 1;
- for (var k in N) {
- if (k === '1') continue;
- if (k === '0') {
- n = 0;
- break;
- }
- N[k]*= P['n'];
- if (N[k] % P['d'] === 0) {
- N[k]/= P['d'];
- } else return null;
- n*= Math.pow(k, N[k]);
- }
- for (var k in D) {
- if (k === '1') continue;
- D[k]*= P['n'];
- if (D[k] % P['d'] === 0) {
- D[k]/= P['d'];
- } else return null;
- d*= Math.pow(k, D[k]);
- }
- if (P['s'] < 0) {
- return newFraction(d, n);
- }
- return newFraction(n, d);
- },
- /**
- * Check if two rational numbers are the same
- *
- * Ex: new Fraction(19.6).equals([98, 5]);
- **/
- "equals": function(a, b) {
- parse(a, b);
- return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0
- },
- /**
- * Check if two rational numbers are the same
- *
- * Ex: new Fraction(19.6).equals([98, 5]);
- **/
- "compare": function(a, b) {
- parse(a, b);
- var t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]);
- return (0 < t) - (t < 0);
- },
- "simplify": function(eps) {
- if (isNaN(this['n']) || isNaN(this['d'])) {
- return this;
- }
- eps = eps || 0.001;
- var thisABS = this['abs']();
- var cont = thisABS['toContinued']();
- for (var i = 1; i < cont.length; i++) {
- var s = newFraction(cont[i - 1], 1);
- for (var k = i - 2; k >= 0; k--) {
- s = s['inverse']()['add'](cont[k]);
- }
- if (Math.abs(s['sub'](thisABS).valueOf()) < eps) {
- return s['mul'](this['s']);
- }
- }
- return this;
- },
- /**
- * Check if two rational numbers are divisible
- *
- * Ex: new Fraction(19.6).divisible(1.5);
- */
- "divisible": function(a, b) {
- parse(a, b);
- return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"])));
- },
- /**
- * Returns a decimal representation of the fraction
- *
- * Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183
- **/
- 'valueOf': function() {
- return this["s"] * this["n"] / this["d"];
- },
- /**
- * Returns a string-fraction representation of a Fraction object
- *
- * Ex: new Fraction("1.'3'").toFraction(true) => "4 1/3"
- **/
- 'toFraction': function(excludeWhole) {
- var whole, str = "";
- var n = this["n"];
- var d = this["d"];
- if (this["s"] < 0) {
- str+= '-';
- }
- if (d === 1) {
- str+= n;
- } else {
- if (excludeWhole && (whole = Math.floor(n / d)) > 0) {
- str+= whole;
- str+= " ";
- n%= d;
- }
- str+= n;
- str+= '/';
- str+= d;
- }
- return str;
- },
- /**
- * Returns a latex representation of a Fraction object
- *
- * Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}"
- **/
- 'toLatex': function(excludeWhole) {
- var whole, str = "";
- var n = this["n"];
- var d = this["d"];
- if (this["s"] < 0) {
- str+= '-';
- }
- if (d === 1) {
- str+= n;
- } else {
- if (excludeWhole && (whole = Math.floor(n / d)) > 0) {
- str+= whole;
- n%= d;
- }
- str+= "\\frac{";
- str+= n;
- str+= '}{';
- str+= d;
- str+= '}';
- }
- return str;
- },
- /**
- * Returns an array of continued fraction elements
- *
- * Ex: new Fraction("7/8").toContinued() => [0,1,7]
- */
- 'toContinued': function() {
- var t;
- var a = this['n'];
- var b = this['d'];
- var res = [];
- if (isNaN(a) || isNaN(b)) {
- return res;
- }
- do {
- res.push(Math.floor(a / b));
- t = a % b;
- a = b;
- b = t;
- } while (a !== 1);
- return res;
- },
- /**
- * Creates a string representation of a fraction with all digits
- *
- * Ex: new Fraction("100.'91823'").toString() => "100.(91823)"
- **/
- 'toString': function(dec) {
- var N = this["n"];
- var D = this["d"];
- if (isNaN(N) || isNaN(D)) {
- return "NaN";
- }
- dec = dec || 15; // 15 = decimal places when no repetation
- var cycLen = cycleLen(N, D); // Cycle length
- var cycOff = cycleStart(N, D, cycLen); // Cycle start
- var str = this['s'] < 0 ? "-" : "";
- str+= N / D | 0;
- N%= D;
- N*= 10;
- if (N)
- str+= ".";
- if (cycLen) {
- for (var i = cycOff; i--;) {
- str+= N / D | 0;
- N%= D;
- N*= 10;
- }
- str+= "(";
- for (var i = cycLen; i--;) {
- str+= N / D | 0;
- N%= D;
- N*= 10;
- }
- str+= ")";
- } else {
- for (var i = dec; N && i--;) {
- str+= N / D | 0;
- N%= D;
- N*= 10;
- }
- }
- return str;
- }
- };
- if (typeof exports === "object") {
- Object.defineProperty(exports, "__esModule", { 'value': true });
- exports['default'] = Fraction;
- module['exports'] = Fraction;
- } else {
- root['Fraction'] = Fraction;
- }
- })(this);
|